Design pattern: An elegant reusable solution to a commonly recurring problem within a given context in software design.
In software development, there are certain problems that recur in a certain context.
Some examples of recurring design problems:
Design Context | Recurring Problem |
---|---|
Assembling a system that makes use of other existing systems implemented using different technologies | What is the best architecture? |
UI needs to be updated when the data in the application backend changes | How to initiate an update to the UI when data changes without coupling the backend to the UI? |
After repeated attempts at solving such problems, better solutions are discovered and refined over time. These solutions are known as design patterns, a term popularized by the seminal book Design Patterns: Elements of Reusable Object-Oriented Software by the so-called "Gang of Four" (GoF) written by Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Exercises
Definition of design patterns
Which one of these describes the ‘software design patterns’ concept best?
(b)
The common format to describe a pattern consists of the following components:
Exercises
Anti-patterns required?
When we describe a pattern, we must also specify anti-patterns.
False.
Explanation: Anti-patterns are related to patterns, but they are not a ‘must have’ component of a pattern description.
Context
Certain classes should have no more than just one instance (e.g. the main controller class of the system). These single instances are commonly known as singletons.
Problem
A normal class can be instantiated multiple times by invoking the constructor.
Solution
Make the constructor of the singleton class private
, because a public
constructor will allow others to instantiate the class at will. Provide a public
class-level method to access the single instance.
Example:
Exercises
Statements about the Singleton pattern
You use the Singleton pattern when
(c)
Here is the typical implementation of how the Singleton pattern is applied to a class:
class Logic {
private static Logic theOne = null;
private Logic() {
...
}
public static Logic getInstance() {
if (theOne == null) {
theOne = new Logic();
}
return theOne;
}
}
Notes:
private
, which prevents instantiation from outside the class.private
class-level variable.public
class-level operation getInstance()
which instantiates a single copy of the singleton class when it is executed for the first time. Subsequent calls to this operation return the single instance of the class.If Logic
was not a Singleton class, an object is created like this:
Logic m = new Logic();
But now, the Logic
object needs to be accessed like this:
Logic m = Logic.getInstance();
Pros:
Cons:
Given that there are some significant cons, it is recommended that you apply the Singleton pattern when, in addition to requiring only one instance of a class, there is a risk of creating multiple objects by mistake, and creating such multiple objects has real negative consequences.
Context
Components need to access functionality deep inside other components.
The UI
component of a Library
system might want to access functionality of the Book
class contained inside the Logic
component.
Problem
Access to the component should be allowed without exposing its internal details. e.g. the UI
component should access the functionality of the Logic
component without knowing that it contains a Book
class within it.
Solution
Include a a French word that means 'front of a building'Façade class that sits between the component internals and users of the component such that all access to the component happens through the Facade class.
The following class diagram applies the Facade pattern to the Library System
example. The LibraryLogic
class is the Facade class.
Exercises
Is this Facade?
Is the design below likely to use the Facade pattern?
True.
Facade is clearly visible (Storage is the <<Facade>>
class).